issued by the Jacksonville office and promptly distributed by the local offices in cooperation with all communication Disturbance of October 18-21.—The first indications of a definite circulation in connection with this slight tropical disturbance were noted about 100 miles off the west Florida coast on the night of October 18-19. It had developed from a wave of low pressure and squally weather that had moved across the southern Bahamas and through the Florida Straits a few days previously, and for which small-craft warnings had been issued on the morning of October 17. On the morning of October 19, a ship, 50 miles west of Tampa, reported a west-southwest wind of 45 miles per hour and a barometer reading of 1,002.4 millibars (29.60 inches). From this location the storm center then moved north-northwestward and passed inland at Cedar Key, about noon of the 20th, where the lowest barometer reading was 1,005.8 millibars (29.70 inches). Available observations show no winds over moderate gale force (40 to 50 miles per hour) during the progress of this storm. Torrential rains (10 to 15 inches) occurred at several points near the center as the disturbance stalled and dissipated over northern Florida. A report from Ocala lists the death of a 6-weeks-old infant, hurled 100 feet from its basket, and injury to both parents when their house was demolished by high winds. This report indicates the formation of a small and short-lived tornado rather than any highly destructive winds resulting directly from the tropical disturbance. All other reported damage resulted from flooding due to the excessive rains. ## METEOROLOGICAL AND CLIMATOLOGICAL DATA FOR OCTOBER 1941 [Climate and Crop Weather Division, J. B. KINCER in charge] #### AEROLOGICAL OBSERVATIONS By Homer D. Dyck Departures from normal surface temperature for October followed nearly the same pattern as in the previous month, temperatures being above normal generally over the eastern half of the country with the exception of an area in the extreme Northeast, and below normal over the western half with the exception of the far Northwest and a narrow strip along the Pacific Coast. Plus departures ranged from 6° to 8° F. over much of the South, while minus departures were small. At 1.500 meters above sea level the 5 a.m. resultant winds for October were from directions to north of normal over the Lake region and the extreme Northeast and over much of the Plateau region and the far Northwest, while they were from south of normal at this level over much of the rest of the country. At 3,000 meters the morning resultant winds for October were from directions south of normal over most of the country with the exception of three stations near the Pacific coast and one near the Lake region, which had resultant winds to north of normal. At 5,000 meters a good comparison of the 5 p. m. resultant winds with the corresponding 5 a.m. normals was not possible over the northern Great Plains and the Lake region. Elsewhere in the country the October afternoon resultants at this level were from directions to south of the corresponding morning normals generally, except over the Pacific Coast States and over a few stations in the East. At both the 1,500- and 3,000-meter levels resultant velocities were below normal over the northern Plateau region, the central Mississippi Valley and an area in the southeastern States. At 5,000 meters the 5 p. m. resultant velocities were decidedly higher than corresponding morning normals everywhere except in the Northwest. Corresponding to the similarity of the October surface temperature departure pattern to that of September, there is also a marked similarity in the departures from normal resultant wind directions for the two months. The same general characteristics are evident in both months, i. e., the turning to southward of normal generally over the eastern half of the country, and the opposite shift from normal over the western half. During October, however, the area in the west where turning to northward of normal took place, was not nearly as extensive as in September thus accounting perhaps for the smaller minus temperature anomalies over that area during October. When the 5 p. m. resultant directions are compared to the corresponding 5 a. m. resultant directions, no well marked areas of similar wind shift are evident. It may be noted, however, that a shift to southward during the day occurred at considerably more stations than a shift to northward. At 1,500 meters the 5 p. m. resultant velocities were smaller than the corresponding 5 a. m. velocities over the extreme northern States and over the Middle Atlantic States and the South, while the afternoon velocities were larger than the morning velocities elsewhere generally. At 3,000 meters the p. m. resultant velocities were higher than corresponding a. m. velocities everywhere except over a small area in the southern Plateau region and California where they were slightly below the morning velocities. The upper-air data discussed above are based on 5 a.m. (E. S. T.) pilot balloon observations (charts VIII and IX) as well as on observations made at 5 p.m. (table 2 and charts X and XI). Radiosonde and airplane stations located in the southern part of the country recorded on the average the highest mean monthly pressures at each of the several standard levels from 2,000 to 18,000 meters. The highest mean monthly pressure occurred over both Atlanta and Charleston at the 2,000- and 2,500-meter levels, over Atlanta at 3,000 and 4,000 meters, and over Atlanta, Brownsville, and Miami at 5,000 meters. At 6,000 meters Atlanta, Brownsville, Miami, and San Antonio recorded the highest mean monthly pressure while the highest occurred over Brownsville, Lake Charles, Miami, and San Antonio at 7,000 meters, over Brownsville and Miami at 8,000 meters, over Miami and San Antonio at 9,000 meters, and over Brownsville, Miami, and San Antonio at 10,000 meters. At 11,000 meters the highest mean monthly pressure occurred over Miami and San Antonio, while at 12,000 meters pressures averaged highest over Brownsville, Miami, and San Antonio. San Antonio recorded the highest mean monthly pressure from 13,000 to 18,000 meters inclusive. Atlanta also recorded the same maximum, however at 16,000 meters. The lowest mean monthly pressure occurred over both Portland, Maine. and Sault Ste. Marie from 2,000 to 6,000 meters inclusive, while at 7,000 and 8,000 meters the lowest occurred over Portland, Maine, Sault Ste. Marie, Seattle, and Spokane, and at 9,000 meters it occurred at Spokane and Seattle. Spokane recorded the lowest mean monthly pressure at levels from 10,000 to 16,000 meters inclusive, with Seattle also recording the minimum at the 14,000, 15,000, and 16,000 meter levels. Portland, Maine, also recorded the minimum at 14,000 and 16,000 meters. Pressures averaged lowest over Spokane at 17,000 and 18,000 meters. Mean monthly pressures at Alaskan stations were lower than mean minimum pressures over the United States at corresponding levels from 2,000 to 16,000 meters, inclusive. Mean surface pressures for October were higher than those for September over most of the United States. At standard levels above the surface, however, only the Northwest recorded higher pressures than last month and these only up to about 7,000 meters, while the rest of the country recorded substantial decreases from last month at all standard levels. These decreases amounted to as much as 9 mb. over Portland, Maine, from about 5,000 to 10,000 meters. All Alaskan stations reported substantial decreases in pressure at all levels. Pressure gradients this month were less steep than last month over the Northwest, but were steeper in general elsewhere over the country. The steepest upper level pressure gradient for October occurred between Sault Ste. Marie and Detroit at the 8,000 meter level where there was a change of 1mb. pressure for each 38 miles of horizontal distance between the two stations. The mean temperatures for October were considerably lower than September's at most levels up to and including 13,000 meters. Above this level scattered exceptions occurred over the southern Plateau region and the Lake region. Mean temperatures for October 1941 were considerably higher than those for October 1940 over most of the eastern half of the country up to and including 11,000 meters and somewhat below October 1940 over the western half up to about 7,000 meters. From 7,000 to 19,000 meters, temperatures over the western half were generally above last year's and from 13,000 to 19,000 meters temperatures over the eastern half of the United States were generally lower than last year's. At 1,000 meters mean temperatures for October were above normal east of the Rocky Mountains with the exception of the central Great Plains and the extreme Northeast where they were slightly below normal. Elsewhere they were below normal at this level. At the 3,000- and 5,000-meter levels mean temperatures were below normal west of the Rocky Mountains and in the extreme Northeast and considerably above normal eslewhere. The mean relative humidities for the month at the 1,000-, 3,000-, and 5,000-meter levels were considerably above normal over most stations. Marked plus departures occurred over San Antonio, Oklahoma City, and St. Louis at the 1,000- and 3,000-meter levels. The altitude at which the mean monthly temperature of 0° C. for October occurred varied from the lowest (2,500 meters) over Seattle, Sault Ste. Marie, and Portland, Maine, to the highest (4,900 meters) over Brownsville, Tex. The level at which, on the average, freezing conditions occurred was lower this month than last over all of the United States with the exception of Pensacola, where it was slightly higher. This level was much lower than it was last month over the extreme Northeast, being 1,600 meters lower over Portland, Maine. The lowest free-air temperature recorded during the month over the United
States was -86.3° C. $(-123.3^{\circ}$ F.). This temperature occurred over Miami, Fla., on the morning of October 6, at an altitude of 16,300 meters (about 10.1 miles) above sea level. The lowest temperature for the month over San Juan was -82.0° C. $(-115.6^{\circ}$ F.) observed at 17,300 meters (about 10.8 miles) above sea level on October 12. Table 3 shows the maximum free-air wind velocities for various sections of the United States during October as determined by pilot balloon observations. The highest observed wind velocity for the month was 77 m. p. s. (172 miles per hour) observed over Great Falls, Mont., on October 2. This wind was blowing from the north at an elevation of 10,220 meters (about 6.4 miles) above sea level. The highest October wind velocity observed during the last 5 years in the free-air layer from the surface to 2,500 meters was 46.8 m. p. s. (105 miles per hour) observed blowing from the south on October 17, 1940, over Rapid City, S. Dak., at an altitude of 1,594 meters (about 1 mile). A velocity of 62.8 m. p. s. (140 miles per hour) is the highest observed in the last 5 years in the layer from 2,500 meters to 5,000 meters. This wind was observed on October 24, 1939, blowing from the northwest at an altitude of 4,240 meters (about 2.6 miles) over Hartford, Conn. During this same 5-year period a still higher wind velocity 78.0 m. p. s. (174 miles per hour) was observed in the layer above 5,000 meters. This wind was blowing from the southwest at an elevation of 7,960 meters (about 14.9 miles) over Denver, Colo., on October 17, 1938 Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during October 1941 | | | | | | | | | | iii pu | | | | 00mu | es uu | | 70.00 | <i>Jei</i> 1 | 041 | | | | | | | | | | | |----------------------------------|--|--|--|--|--|--|---|--|--|---|--|--|--|---|---|--|--|---|--|--|--|--|---|--|--|---|---|---| | | | | | | | | | | | Statio | ons wit | h ele | vatio | ns in m | ieters a | bove | sea le | evel | | | | | | | | | | | | | Albı | iquero
(1 | ue, N.
,620 m.) | Mex. | | | -
ita, Ga.
90 m.) | | Bi | | s, N. D
5 m.) | ak. | | Boise
(86 | , Idaho
4 m.) | | Bi | | ville, To
m.) | 9 x. | : | Buffal
(22 | o, N. Y
1 m.) | 7. | 9 | Charles
(14 | ton, 8.
m.) | c. | | Altitude
(meters)
m. s. l. | Number of ob- | Pressure | Temperature | Relative bu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob- | Pressure | Tenperature | Relative hu- | | Surface | 30
30
30
30
30
30
30
30
29
29
29
27
26
24
23
20
19
10 | 628
553 | 12. 6
9. 5
8. 8
-1. 1
166. 8
-12. 6
-19. 3
-26. 4
-33. 6
-47. 0
-52. 5
-66. 8
-64. 1
-66. 2 | 5 544
5 555
8 49
8 49
8 39
8 37
8 37 | 31
31
31
31
31
31
31
31
31
31
31 | 986
963
909
857
808
761
717
635
561
493
433
379
330
287
248
213
182
155
132
194
79
67
57 | 18. 0
15. 7
13. 5
11. 0
8. 6
3. 9
-1. 8
-20. 8
-28. 0
-35. 5
-43. 2
-50. 8
-57. 8
-68. 7 |
63
67
64
56
56
56
34
31
28
29
29
29
28 | 31
31
31
31
31
31
31
31
31
31 | 957 901 848 797 749 620 546 478 417 362 313 270 232 199 170 145 124 106 90 77 666 | 6. 0 8. 2 5. 7 3. 2 1. 4 -1. 2 -6. 0 -12. 4 -19. 2 -26. 5 -33. 8 -41. 0 -47. 1 -54. 1 -54. 1 -54. 8 -56. 2 -58. 0 -58. 0 -56. 9 | 65
63
61
57
55
51
50
49
48
47 | 28 | 917
902
850
850
752
707
623
547
418
363
314
270
232
199
170
145
105
90
76 | 2.6
-0.7
-7.1
-13.4
-20.3 | 66
62
61
61
61
59
55
54
53 | 31
31
31
31
31
31
31
31
30
29 | 1, 014
958
905
854
806
759
7156
634
561
494
434
380
288
248
214
183
155
131
110
93
78 | 24. 7 23. 4 20. 6 18. 4 16. 9 5. 0 -0. 7 -13. 9 -20. 7 -28. 1 -35. 8 -44. 0 -51. 9 -76. 6 -76. 6 -75. 8 -71. 6 | 71
68
59
56
55
53
46
43
41
40 | 31
31
31
31
31
31
30
30
30
30
28
26 | 992
960
903
850
752
707
623
549
481
367
318
275
237
203
147
116
107
91
77
77
66 | 10.5
8.4
6.4
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2 | 7 54
69
63
59
7 54
63
63
63
63
63
63
63
63
63
63 | 31
31
31
31
31
31
31
30
30
30
30
29
29
29 | 963
909
858
761
716
634
560
493
433
379
286
246
211
180
109
977 | 20.1
17.1
14.1
13.1
10.0
8.4.0
-15.1
-22.2
-29.2
-37.2
-45.4
-67.2
-75.1
-76.1
-76.1 | 00 77
733 77
76
77
88 66
88 44
88 44
88 22
22
23
24
24
24
24
24
24
24
24
24
24
24
24
24 | | | | | | | 1 . | | | | | | tations | | elev | | | ers ab | | | | | TT | | on. W. | 37- | 1 | T-11- | 4 TI | | | Altitude | | (1,61 | r, Colo.
6 m.) | | | | , Mich
m.) | • | ļ | (1,19 | o, Tex.
3 m.) | | | Ely,
(1,90 | 8 m.) | | . 1 | | lls, Mo
8 m.) | | | | 2 m.) | | | (178 | t, Ill. | 1. | | (meters)
m. s. l. | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Tenperature | Relative hu- | | Surface | 30
30
30
30
30
30
29
28
27
26
24
21
18
19
18
17
16
14 | 839
801
753
708
625
550
483
422
367
318
275
236
202
173
148
125
107
917 | 2. 4
-3. 4
-9. 6
-16. 3
-23. 2
-37. 5
-44. 6
-50. 4
-56. 8
-59. 2
-61. 2
-62. 4 | 64
63
64
63
59
58
52
49 | 31
31
31
31
31
31
30 | 994
958
903
850
800
752
707
625
550
423
369
3277
238
205
175
149
127
108
92
78 | 10. 4
11. 6
8. 6
7. 1
5. 0
2. 9
-1. 9
-20. 8
-14. 0
-27. 7
-35. 0
-41. 9
-53. 9
-63. 4
-63. 4 | 75
67
61
55
52
49
48
43
42
41
39 | 31
31
31
31
32
29
28
27
27
27
27
27
27
26
26
24
21
18 | 882
851
802
756
711
630
556
489
428
374
325
282
243
209
178
152
109
92
78
66 | 16. 6 | 55
57
56
50
41
40
38
38
37 | 31
31
31
31
31
31
31
31
31
30
30
30
30
30
29
29
26
15 | 809
752
707
624
548
480
420
364
272
234
200
171
146
91 | 3.7 5.6 4.1 .7 -5.4 -11.8 -18.7 -25.5 -30.0 -40.2 -46.1 -50.3 -57.0 -58.8 -60.4 -61.1 | 60
59
58
56
52
50
49 | 31
31
31
31
31
31
31
31
31
31
31
30
30
30
27
26
21 | 888
798
750
621
546
478
417
362
313
270
232
198
169
145
105
90 | 7. 2
7. 7
4. 8
1. 8
-1. 0
-6. 6
-12. 9
-19. 5
-26. 8
-41. 5
-47. 6
-52. 2
-57. 4
-58. 1
-58. 1 | 55
54
52
51
50
47
45
45 | 31
31
31
31
31
31
30
30
30
30
30
30
29
29
26
19
14 | 999
961
906
854
804
757
712
629
555
487
427
373
324
280
242
207
175
1128
108
92
77 | 13. 8
15. 3
13. 4
11. 2
9. 5
7 . 5
5
5
12. 3
- 12. | 72
71
66
57
55
52
49
44
42
41
40
41 | 28
27
27
27
27 | 997
959
904
851
800
753
*708
025
551
484
423
369
320
277
238
204
174
148 | 11. 4
12. 1
9. 8
8. 0
6. 7
4. 9
2. 9
-2. 1
-21. 0
-27. 7
-34. 8
-41. 8
-48. 3
-54. 7
-60. 4
-64. 3 | 78
75
72
65
61
57
53
48
46
44
42
43 | # MONTHLY WEATHER REVIEW Table 1.— Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during October 1941—Continued | | | | | | | | | | | | | | | ing Ot | tober | -0.7. | | | nava | | | | | | | | | | |-----------------------------------|---|---|---------------------|--|--|---|---|----------------------------------|--|--|---|--|---|---|---|--|-----------------------------|--|--|--|--|---|--|--|---|--|---|--| | | | | | | | | | | | 8 | tations | with | elev | ations | in mete | rs ab | ove s | ea leve | el | | | | | | | | | | | | La | ke Ch
(5 | arles, I
m.) | . 8. | Le | kebur
(39 | st, N. J
m.) | 1,1 | Ŋ | | d, Oreg
m.) | • | | Miam
(4) | i, Fla.
n.) | | Na | shville
(180 | , Tenn
m.) | • |] | Norfoll
(10 | r, Va.¹
m.) | 1 | | Oaklan
(2 | d, Cali
m.) | if. | | Altitude
(members)
m. s. l. | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | | 8urface | 30
30
30
30
30
30
30
30
29
29
29
29
28
28
28
28
27
25
21
19
13
5 | 1, 016
960
906
855
806
760
716
634
560
493
433
287
248
213
183
155
132
111
93
78
66 | -64. 6
-69. 6 | 78
74
69
65
56
51
48
42
40
39
38 | 32
32
32
32
32
32
32
32
31
30
29
27
26
4
22
22
22
19
18
18
16
10
5 | 1,
014
960
905
862
802
754
709
626
552
484
424
278
239
205
176
150
128
109
93
79
68 | 12. 0 12. 4 10. 2 8. 8 8. 8 77. 4 -13. 6 -20. 2 -27. 0 -34. 1 -47. 6 -53. 8 -62. 4 -63. 5 -62. 4 -63. 5 | 56
53
57
61
62
60 | 31
31
31
31
31
31
31
31 | 970
958
903
850
800
752
707
624
549
481
420
365
316
273
234
200
171
146
124
108
90 | 11. 2
12. 2
11. 4
8. 5. 7
3. 1
0. 4
-4. 7
-10. 5
-24. 8
-32. 1
-39. 3
-45. 9
-51. 1
-64. 9
-57. 7
-60. 1
-60. 6
-60. 6 | 66
69
69
64
59
44
43
43
42
39 | 31
31
31
31
31
31
30
30
30
30
29
29
29
29
29
28
21
4 | 1, 017
961
907
856
807
760
716
634
434
434
434
1380
331
249
214
183
156
132
111
94
78
66 | 24. 4
22. 5
19. 2
16. 2
13. 8
11. 9
4. 5
-0. 6
-13. 1
-20. 2
-27. 7
-35. 2
-42. 6
-50. 6
-58. 3
-71. 7
-75. 5
-75. 6 | 79
76
64
56
45
38
33
30
29 | 31
31 | 998
962
907
855
806
759
715
558
491
376
327
284
245
211
180
153
130
110
93
78 | 18. 4 19. 1 16. 6 14. 6 12. 4 2. 1 -3. 2 -9. 5 -9. 5 -3. 2 3. 2 3. 4 5. 3 -52. 8 -67. 3 -68. 5 -68. 7 -64. 1 | 66
69
66
62
59
54
46
44
42
39
36
33 | 22
22
22
22
22
22
22
21
21
18 | 1, 022
964
909
857
760
715
632
558 | 18. 2
18. 3
16. 6
13. 5
11. 5
9, 7
7. 1
1. 8
—5. 8 | 68
64
62
57
52
46
38 | 31
31
31
31
31
31
31
31
31
29
29
28
25
5
17
17
15
9
5 | 1, 015
957
902
850
753
708
625
551
483
422
367
318
276
237
204
174
149
127
108 | 6.1
3.4
-2.8
-15.8
-22.8
-29.6
-36.3
-42.3
-51.8
-55.1
-57.6
-60.8 | 4 58
7 51
7 49
4 46
1 40
33
33
7 30
8 32
8 32
8 32
8 32
8 32
8 32
8 32
8 32 | | | | | | | | | | | | | | | _ | | | | | | | _ | _ | _ | | | | | | | | | | | | | | | | | | 8 | tations | with | elev | ations | in mete | ers al | bove s | sea lev | el | | | | | | 1 | | ······ | | | A 3424 3 - | 0 | klaho
Okla. | ma Cit;
(391 m.) | y,
) | (| | a, Nebr | • | F | ensaco | stations
ola, Fla
m.) | | | | x, Ariz. | | 1 | ortland | el
l, Mair
m.) | 18 | 6 | St. Lou
(171 | iis, Mo
. m.) |) . | 8 | t. Pau
(22) | ıl, Min
5 m.) | n. | | Altitude
(meters)
m. s. l. | Number of ob- | Pressure | ma Cit;
(391 m.) |) | | | | | -d _s | ensaco
(24 | ola, Fla
m.) | ,ı | -qo | Phoeni | x, Ariz. | | r of ob- | ortland | i, Mair | | Number of ob-
servations | Pressure | rature E | e hu- | r of ob- | Pressure | Tenperature (.w. fr | Relative hu- | See footnotes at end of table. Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during October 1941—Continued | | | | | | | rpian | ies ar | ia rac | uoson
— | aes | auri | ng O | ctoo | er 19 | 41 | Cont | inued | ا
 | | | | | | | | | |---|--|---|--|---|---|--|--|---|--|---|--|---|--|--|--|---|---|---
---|---|--|--|--|--|--|--| | | | | | | | | | | Stati | одз W | rith e | levati | ons ir | met | ers abo | -
076 868 | level | | | | | | | | | | | | Sar | 1 Anto | nio, Te
m.) | x.) | Sa | n Dieg
(19: | o, Cal
m.) | if.1 | Sault | Ste.
(22 | Mari
1 m.) | e, Mic | eh. | s | eattle
(27 | , Wash
m.) | .1 | 6 | Spoka
(5 | ne, Wa
98 m.) | sh. | | Wash | ingto
(25 m | n, D.
1.) | c. | | Altitude (meters)
m. s. l. | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of 6b-
servations | Pressure | Temperatura | Relative hu- | midity | Number of ob-
servations | Pressure | Temperature | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob- | Progenite | omeou i | Temperature | Relative hu-
midity | | Surface | 31
31
31
31
31
31
31
31 | 996
960
960
855
806
759
716
634
560
494
434
331
288
249
214
184
157
133
112
95
80
68 | 21. 1
19. 1
17. 0
14. 4
12. 0
9. 8
4. 8
-0. 8
-13. 1
-13. 1
-19. 8
-26. 4
-33. 8
-41. 2
-48. 7
-55. 9
-62. 2
-67. 6
-71. 1
-71. 1
-69. 1 | 90
85
79
79
80
67
58
53
48
45
41 | 300
300
300
300
299
289
286
277
24
233
211
19
16
12
10
7 | 1, 011
956
901
849
800
753
708
626
552
486
552
425
371
322
278
240
206
177
151
128 | -26. 5
-33. 0
-39. 7
-45. 5
-51. 3
-56. 0
-59. 7 | 63
54
46
42
36
40
37
39 | 311
311
311
311
311
312
26
26
25
24
23
223
221
20
18
155
9 | 999
955
90
844
7997
744
7707
614
366
311;
277
141
122
110;
88
76 | 70 44
76 11
68 02
-77 -12
68 02
-78 -12
6 -18
6 -28
6 -28
-32
-32
-52
-52
-52
-52
-53
-58
-58
-58
-58
-58
-58
-58
-58 | 3. 7
5. 7
5. 7
7. 1
7. 1
7. 1
7. 1
7. 1
7. 1
7. 1
7 | | 311
311
311
311
311
311
311
311
299
299
277
277
227
221
19
14 | 1, 015 959 903 850 799 751 705 621 5457 416 361 312 269 231 198 169 144 1124 88 74 | 7.7
5.0
2.6
0.1 | 90
888
85
79
74
69
52
55
54
49 | 31
31
31
31
31
31
31
31
30
30
28
27
27
27
25
24
20
13
8 | 90
84
79
75
70
62
54
41
36
31
28
23
19
16
14
12
10
8 | 22 8.
99 5.
88 3.
0 0.
55 -2.
-14.
7 -20.
6 -28.
-36.
2 -43.
8 -49.
0 -53.
7 -55.
8 -56.
4 -57.
2 -58.
4 -57. | 1 77
9 65
5 62
6 61
1 44
4 4
4 4
4 4
5 66
7 7 | 332223333333222222222222222222222222222 | 9 4
9 8
8 8
8 2
7 2
1
6 1
5 1
2 | 963
908
908
805
758
713
330
556
-128
-128
-178
-178
-109
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-178
-1 | | | | | | | - | A ncho | rage, A | laska | Atla | ntic Sta | ation N | | | | | | | | bove se | ТТ | | o Solo | C. Z.1 | . | Fairt | nanks | s, Alas | | | | | _ | | (| 42 m.) | | | (3 1 | n.) | | | (3 | m.) | | _ | (7 | m.) | | | (15 n | a.)
——— | _ | r an c | (156 1 | m.) | | | Altitude (mete | ers) m. | s. 1. | Number of ob- | Servations Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob-
servations | Pressure | Temperature | Relative hu- | Number of ob- | Pressure | Тетрегатиге | Relative hu-
midity | Number of ob-
servations | Pressure | Temperature | Number of ob- | Servations | rressure | Temperature | Relative hu- | | Surface 500 1,000
1,000 | | | | 29 5
29 4
28 3
27 2
27 2
27 2
27 2
25 11
23 10
20 11
5 10 | 866 — (31 — 3886 — 1910 — 1925 — 225 — 225 — 226 — 3742 — 4494 — 4494 — 4886 — 4886 — 4886 — 48888 — 4888 — 488888 — 48888 — 48888 — 48888 — 48888 — 48888 — 48888 — 48888 — 48888 — 48888 — 48888 — | 7. 4 63
3. 9 60
5. 8 59
7. 6 59
1. 2
1. 5
1. 5
1. 5
1. 5
1. 6
1. 6
1. 6
1. 7
1. 8
1. 8
1. 8
1. 9
1. 9 | 28
28
28
28
28
27 | 1, 017
960
905
852
802
755
710
628
426
426
427
323
280
242
207
151
128
109
92
78
66
66
66 | -62. 1
-64 2 | 80
80
72
63
55
40
38
35
35
34 | 27
27
27
27
27
27
27
27
28
25
25
24
23
22
20
17
17
15
19
6 | 1, 017
960
904
852
802
754
710
627
552
425
370
205
175
149
126
107
91
77
65
55 | -27.
-34.
-42.
-49.
-55.
-60. | 8 8 7 6 6 6 4 4 3 5 6 4 4 3 5 6 4 4 3 5 6 6 2 2 5 5 8 9 4 | 27
26
26
23
23
19 | 1, 003
944
887
832
7832
686
686
601
525
457
396
342
294
2217
186
159
118
108
75 | 1. 6
0. 2
-2. 3
-6. 8
-9. 6
-12. 5
-18. 3
-30. 9
-37. 9
-44. 0
-49. 1
-50. 8
-47. 8
-47. 8
-48. 0
-48. 4
-48. 9 | 79
72
66
66
62
63
62
58
56
55 | 19
19
19
19
19
19
6 | | 26. 4
24. 9
22. 2
19. 4
16. 7
13. 5
10. 7
4. 1 | 92
79
78
70
66
64
60
58 | 30
30
30
30
30
30
30
30
30
29
29
28
26
26
26 | 731
684
598
522
453
392
290
290
213
183
156
134
115 | -2.8 -4.6.4 -8.5 -10.4 -15.6 -21.9 -28.4 -34.9 -41.3 -51.3 -50.3 -50.4 -51.3 -50.4 | 75
77
78
76
74
72
70
67
67 | See footnotes at end of table. Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during October 1941—Continued | | | ir piu | ites u | iu ru | 110801 | iues u | iarinę | 7 000 | 06/ 16 | 941 | Com | muec | | | | | | | | | |--|---------------------------|---|--|--|---|--|--|--|--|--|---|--|----------------------------------|----------|--|--|--|--|--|------------------------| | | | | | | | | Stat | ion's w | ith ele | vations | s in me | eters ab | ove sea | a level | | | | | | | | | June | au, Al | aska (4 | 9 m.) | K | tchika
(26 | n, Ala
m.) | ska | Non | ae, Ala | ska (1 | 4 m.) | St. | Thom: | as, V.
n.) | I.1 2 | San J | uan, F | P. R. (1 | 5 m.) | | Altitude (meters) m. s. l. | Number of
observations | Pressure | Temperature | Relative hu-
midity | Number of
observations | Pressure | Temperature | Relative humidity | Number of
observations | Pressure | Temperature | Relative hu-
midity | Number of
observations | Pressure | Temperature | Relative hu- | Number of
observations | Pressure | Temperature | Relative hu-
midity | | ·· · · · · · · · · · · · · · · · · · · | ngo
Sqo | Pre | Ten | Rel | nN
sqo | Pre | Ter | Bel | Na | P. P. | Ter | Rel | N See | Pre | Ter | Rel | ng o | | Ter | Rel | | Surface 500 1,000 1,000 1,500 2,000 2,000 3,000 4,100 5,000 6,000 7,000 8,000 10,000 11,000 | 5 | 462
401
346
298
256
220
189
162
139
120
102
88 | 1. 4
-1. 1
-3. 9
-6. 8
-9. 7
-15. 7
-22. 4
-28. 8
-35. 6
-42. 2
-47. 6
-48. 4
-47. 8
-47. 9
-48. 0
-48. 3
-48. 9 | 83
83
83
81
79
76
65
63 | 23
21
20
19
18
15
15
14
14
13
10
7 | 351
303
260
224
192
164
140
120 | -7.5
-13.7
-19.9
-26.7
-33.3 | 88
88
88
86
80
76
72
70
68
66 | 30
30
29
29
29
29
29
28
26
26
24
22
20
20
18
17
17
17 | 886
831
7730
683
597
521
453
392
250
214
184
158
136
117
100
86 |
-4.5
-7.0
-9.2
-12.3
-15.0
-20.9
-26.8
-33.4
-45.5
-49.6
-50.6
-49.4
-47.1
-46.7
-46.5
-46.5 | 81
80
76
73
71
70
66
59
56
55 | 31
31
31
31
31
31 | | 20. 8
17. 9
15. 5
13. 4
6. 0 | 93
78
75
71
60
49
36 | 31
31
31
31
30
30
29
28
28
28
28
28
28
28
28
28
28
28
28
28 | 248
214
184
156
133
112
94
80
67
57
48 | 17.3
14.6
12.3
9.9
4.5
-0.9
-6.8
-13.3
-20.0 | | ### Late Reports for September and August | | | | | | ЭСР | | er an | | -8- | | | | | | | | | | | _ | |----------------------------|---------------------------|---|---|--|---|--|--|--|--|--|--|--|--|---|---|--|--|---|---|------------------------| | | | | | | | £ | Stations | with | elev | ations | in mete | rs at | ove s | ea leve | ol | | _ | | | | | | 8 | ept em | BER 194 | 11 | | | | | | | Αī | JGUS | г 194 | 1 | | | | | | | | Altitude (meters) m. s. l. | St. | Thom: | as, V. I.
m.) | . 1–2 | 3 | Barrow
(6 | , Alask
m.) | a | | Joile
(17 | et, III.
8 m.) | | St. I | homa:
(8 | s, V. I.
m.) | 1-2 | 87 | | and, W | . I. | | | Number of
observations | Pressure | Temperature | Relative hu-
midity | Number of
observations | Pressure | Temperature | Relative hu- | Number of observations | Pressure | Temperature | Relative humidity | Number of
observations | Pressure | Temperature | Relative hu-
midity | Number of
observations | Pressure | Temperature | Relative hu-
midity | | Surface | 26 26 26 | 1, 014
958
905
854
805
759
716
635 | 27. 8
24. 3
21. 6
18. 7
16. 5
14. 2
11. 8
6. 4 | 74
92
76
71
63
53
48
40 | 31
31
31
31
31
31
31
31
31
31
31
31
32
29
28
27
25
24
22
21
13
8 | 1, 016
957
900
846
795
747
701
617
542
474
413
358
309
266
6228
196
164
124
106
91
78
658 | 3.5
5.1
4.6
3.0
1.0
-1.2
-3.9
-9.5
-15.6
-22,2
-29.1
-36.6
-51.9
-44.0
-51.9
-48.0
-46.9
-46.2
-46.2 | 92 83 73 76 68 65 63 61 60 57 55 53 53 | 29
29
29
29
29
29
29
29
26
25
24
24
24
21
19
17
17
17
16
15 | 995
958
904
853
804
757
712
630
556
489
429
374
326
282
244
204
179
152
129
110
93
79 | 18. 5
20. 9
18. 4
15. 2
12. 3
9. 6
6. 9
1. 0
-4. 4
-10. 1
-16. 5
-23. 8
-31. 2
-38. 7
-46. 0
-52. 9
-58. 4
-62. 5
-64. 7
-63. 1
-59. 9 | 85
69
67
72
72
71
67
63
56
49
45
42
38 | 28
28
28
28
28
28
28
28
28
 | 1, 016
961
907
856
808
762
718
637 | 27. 8
24. 3
21. 3
18. 6
16. 4
14. 1
11. 8
6. 3 | 74
91
79
72
68
59
50
47 | 31
31
31
31
31
31
31
31
30
30
30
30
30
30
30
30
30
30
30
30
30 | 1, 013
958
905
854
806
759
716
634
560
494
434
331
288
214
183
155
131
111
93
78
66
56 | 27. 1
24. 3
21. 6
18. 8
16. 2
13. 6
10. 9
4. 8
-1. 0
-6. 9
-13. 3
-19. 9
-34. 5
-42. 7
-50. 9
-72. 7
-75. 7
-75. 7
-72. 6
-69. 1
-69. 5 | | ¹ U. S. Navy. 2 Airplane observations. 4 Observations made on Coast Guard vessels in or near the 5° square. Lat. 35.00′ N. to 40.00′ N. Long. 55.00′ W. to 60.00′ W. 4 Observations made on Coast Guard vessels in or near the 5° square. Lat. 35.00′ N. to 40.00′ N. Long. 45.00′ W. to 50.00′ W. Note.—All observations taken at 11 p. m. 75th meridian time, except at Lakehurst, N.J., where they are taken near 5 a. m., E. S. T., at Norfolk, Va., where they are taken at about 6 a. m., and at Pearl Harbor, T. H., St. Thomas, V. I., and Coco Solo, C. Z., at about 7 a. m. None of the means included in this table are based on less than 15 surface or 5 standard level observations. Number of observations refers to pressure only, as temperature and humidity data are missing for some observations at certain levels; also, the humidity data are not used in daily observations when the temperature is below -40° C. Table 2.—Free-air resultant winds based on pilot balloon observations made near 5 p. m. (75th meridian time) during October 1941. Directions given in degrees from North ($N=360^{\circ}$, $E=90^{\circ}$, $S=180^{\circ}$, $W=270^{\circ}$)—Velocities in meters per second | | | | | | | | - | | | | | - | | | | | | , . | | | | | | | 1 | | 1100 | 1 | | = | 1 | | | 1 | | | | | _ | |----------------------------------|--|---|--|--|---|---|--|---|--|--|--|---|--|--|---|--|---|--|--|--|--|--|--|---|--|---|--|--|--|--|--|---------------------------------|--|--|--|---|--|---|--| | | A
(5 | biler
Tex
37 n | ne,
n.) | que | buqi
N. I
630 1 | Mex. | Ì | Itani
Ga.
199 m | | 1 | illing
Mont
095 n | | N | mar
. Da
512 m | k. | | Boise
Idah
366 m | ó | vil | row
lle, 7
(7 m | ex. |] | uffal
N. Y
220 m | | | rling
Vt.
132 n | | Ch
(| arles
S. C
17 m | ton,
.) | 1 | hica
Ili.
192 n | | l |
ocini
Ohie
152 n | 0 ′ | ļ | enve
Colo
627 1 | ١. ` | | Altitude
(meters)
m. s. l. | Observations | Direction | Velocity | Surface | 29
28
26
26
22
20
14
13
11 | 253 | 5.0 | 30
30
24
23
19 | 198
195
207
228
256
254
256
267 | 3. 7
4. 0
5. 1
9. 7
13. 3
14. 0
20. 7 | 30
28 | 41
89
82
172
297
304
294
287
286
281
279
279 | 0.8 | 29
29
29
28
28
24
22
21
14 | 228
251
269
272
286
284
281
275
310 | 1.8
3.3
4.2
5.5
6.8
7.7
9.3
7.6 | 29
28
24
22
21
20
20
19 | 290
295
283
288
281
282
281
282
278
276 | 2. 2
2. 5
4. 7
6. 7
8. 2
10. 5
13. 3
16. 2
19. 3
21. 5 | 30
30
30
28
25
24
20
19 | 321
316
315
304
284
276
266
298
295
300 | 3. 2
3. 8
2. 6
2. 5
3. 2
2. 6
1. 8
2. 6
4. 7
8. 9 | 31
28
26
25
23
19
18
17
10 | 158
174 | 4. 1
4. 1
4. 5
4. 1 | 21
19
17
12
10 | 264
259
261
267
269
275
276
282 | 3. 5
5. 6
7. 8
9. 7
10. 8
13. 4
14. 9
15. 4 | 29
29
24
20
17
13
10 | 226
246
272
282
290
289
298 | 1. 4
4. 8
7. 4
9. 8
12. 0
13. 0
14. 5 | 31
31
29
27
27
27
28
25
22
12 | 129
125
131
212
252
266
277
276
272
273
284 | 1. 4
2. 2
1. 5
1. 5
2. 3
2. 8
4. 2
6. 6
7. 5
13. 6 | 29
27
24
23
23
22
18
17
14 | 273
276
284
289
295 | 1. 2
4. 0
6. 4
8. 4
10. 7
11. 7
17. 0
19. 5
25. 3
31. 0 | 26
25
24
22
21
17
16
11 | 243
243
248
255
269
267
268
284
285
276 | 0. 9
3. 4
5. 2
7. 6
8. 9
11. 3
12. 7
15. 3
18. 4
20. 9 | 29
28
24
22
21 | 8
42
260
270
266
267
263
268 | 0.9 | | | E
(1, | Pa
Tex
196 | so,
m.) | | y, N
,910 i | | Ju | 3ran
netic
Colo
,413 r | on, | 1 | ensb
N. C
71 m | | 1 | Havr
Mon
167 n | t. | vi. | ackso
lle, I
14 m | Pla. | | s Ve
Nev
570 n | - | | tle F
Ark.
79 m | | | edfo
Oreg
110 n | . 1 | N
(| iam
Fla.
10 m | ıi,
.) | lis | innes
Mi
265 n | nn. | | Aobi
Ala
(8 m | | 1 | shvi
Fenr
94 m | 1. | | Altitude
(meters)
m. s. l. | Observations | Direction | Velocity | Surface | 30
29
30
30
29
25
21
19
12 | 211
217
224
229
242
250
249
253
250 | 2.9 | 31
31
31
25
19
17
13 | 269
283
207
234
268
251
267
274
279
274 | 1. 6
3. 0
6. 4
7. 0
10. 6
14, 0 | 30
30
28
24
20
17 | 263
262
204
213
201
235
261 | 0.8
1.1
1.8
4.0
4.9
5.2
5.9 | 31
31
31 | 253
248
245
258
277
278
283
282
284
285
284
295 | 0. 8
2. 0
3. 5
4. 7
6. 7
8. 6
8. 9
10. 9
12. 4
16. 9
17. 4
22. 7 | 30
30
29
28
26
21
19
15
11 | 258
257
260
265
267
274
273
272
293
289 | 7. 3
7. 4
8. 1
9. 6 | 0.0 | 91
97
115
159
182
290
284
298
301
296
295
305
294 | 3.6
6.2
9.1 | 30
30
30
29
25
23
19
17
13
11 | | 1. 1
1. 5
1. 3
1. 8
2. 2
1. 4
5. 0
8. 1
11. 7
18. 1
20. 3
22. 9 | | 165
178
207
216
217
236
240
260
256 | 1. 9
2. 9
3. 3
4. 1
5. 7
6. 8
7. 7
9. 9
10. 8 | 29
29
29
28
27
27
24
24
23
21
18
15
10 | 326
318
344
282
180
258
298
327
332
342
327
314
324 | 0. 9
1. 3
1. 2
0. 1
0. 9
0. 4
3. 3
4. 5
6. 4
7. 6
14. 4
15. 3 | 31
31
30
26
25
24
24
25
23
18
16
12 | 95
93
89
91
102
127
114
108
83
72
63
336
297 | 4. 0
5. 3
4. 3
3. 1
2. 5
2. 7
3. 1
2. 7
2. 3
1. 7
2. 5
3. 4
4. 6 | 28
24
22
17
16
16
16
12
10 | | 0. 9
1. 8
2. 9
4. 9
9. 1
11. 1
13. 6
16. 3
19. 7
21. 4
27. 6 | 31
31
29
26
24
19
15
14
11 | 115
117
128
70
101
273
282
245
283 | 1. 9
1. 6
1. 1
0. 2
0. 8
1. 4
2. 5 | 31
31
31
31
27
24
20
16
13
10 | 213
218
216
226
243
258
278
275
289 | 2.8
4.5
5.3
5.2
6.1
7.2 | | | 1 1 | w Y
N. Y
15 m | 7. | | akla:
Cali
(8 m | f. | Ok
Cit | laho
ty, O
102 n | ma,
kla.
1.) | 1 | mah
Nebi
306 m | • | l | boer
Ariz
338 n | | 8 | pid (
). Da
)82 m | k. | 1 | . Lo
Mo
181 I | | tor | an A
nio, T
180 m | n-
Fex.
1.) | 1 | n Di
Cali:
15 n | | | ault i
Marie
Mich
230 m | e,
1. | l ' | eatt
Wasi
12 m | h. | ' | poka
Wasi
603 n | h. | Wa (| shing
D. C
24 m | ton, | | Altitude
(meters)
m. s. i. | Observations | Direction | Velocity | Surface | | 275
287
279
288
290
294
293 | 3. 4
5. 1
6. 2
8. 1
10. 6
14. 0 | 31
30
28
26
25
25
22
21
20
12 | 258
325
335
323
323
326
332
329
315
308
270 | 2.9
1.5
1.8
2.1
2.2
2.7
4.6
7.6
9.4
10.9
11.7 | 25
25
22
20
20
19
17
16
13
10 | 198
183
189
218
222
239
241
246
245
253 | 2. 2
2. 7
4. 6
7. 0
8. 8
9. 5
10. 0
13. 1
14. 3
18. 2 | 29
28
27
23
19
15
14
14
14
12 | 191
183
203
237
261
281
284
275
269
272
274 | 1. 5
2. 4
3. 2
4. 6
5. 4
6. 1
8. 9
10. 5
13. 0
14. 7
19. 9 | 31
31
31
31
30
30
29
26
21
15 | 200 | 0. 9
1. 2
1. 1
1. 9
3. 7
5. 7
6. 2
8. 8
11. 8
13. 0
16. 5 | 1 11 | 356
346
310
287
283
286
277
274
276
284 | 1. 8
3. 8
5. 7
6. 6
8. 7
10. 2
11. 7 | 27
26
25
22
21
19
18
15 | 197
211
210
238
264
267
268
280
277
287 | 1. 0
2. 3
4. 3
6. 0
7. 3
9. 6
10. 5
12. 5
15. 2
16. 5 | 30
30
30
28
26
22
20
15
12
11 | 120
130
146
169
186
206
222
237
242
242 | 2. 2
3. 2
3. 7
4. 5
5. 4
5. 9
5. 7
7. 0
8. 4
10. 6 | 2 31
31
30
5 29
25
24
21
19
14 | 250
247
222
169
226
267
277
289
267 | 2. 9
3. 0
0. 9
0. 6
0. 7
2. 6
4. 0
7. 5
10. 1 | 17
13
10 | 292
288
289
275
273
280 | 3. 2
3. 9
7. 8
8. 8
10. 1
11. 2 | 30
30
27
20
18
17
14
12 | 252 | 3. 5
5. 0
4. 5
3. 4
4. 1
4. 5 | 28
28
25
24
22
19
12
11 | 210
212
224
235
245
250
274
279 | 1. 5
2. 2
3. 5
4. 8
5. 4
6. 3
3. 3
2. 2 | 31 | 291 | 2.6
4.4
5.6
7.5
10.4
11.6
13.1
15.4
17.7
20.6
28.6 | Table 3.—Maximum free air wind velocities, (m. p. s.), for different sections of the United States based on pilot-balloon observations during October 1941 | | | Surface | to 2,50 | 0 me | ters (m. s. l.) | : | Between 2, | 500 and | 5,000 | meters (m. s. l.) | | 1 | Above 5, |)00 n | neters (m. s. l.) | |---|---|--|--|--|-------------------|---|---|--|--|--|------------------------------|-------------------------------------|---------------------------|---|---| | Section | Maximum ve-
locity | Direc-
tion | Altitude (m.)
m. s. l. | Date | Station | Maximum ve- | Direc-
tion | Altitude (m.)
m. s. l. | Date | Station | Maximum ve- | Direc- | Altitude (m.)
m. s. l. | Date | Station | | Northeast 1 East-Central 2 Southeast 3 North-Central 4 Central 5 South-Central 6 Northwest 7 West-Central 8 South-West 9 South-West 9 | 42. 6
36. 2
26. 3
39. 4
36. 6
34. 0
36. 0
33. 4
29. 9 | {WSW
WSW
SW
WSW
SW
WSW
NNW | 1,740
2,420
1,650
2,100
2,500
1,970
1,900
430 | 5
8
27
27
7
5
17
3
2 | Sacramento, Calif | 55. 4
28. 2
63. 2
45. 0
38. 4
37. 6
51. 6 | NW
NW
NW
SSW
SW
WSW
NNE
SW | 4, 400
3, 940
3, 170
4, 970
3, 370
3, 770
4, 650 | 23
10
10
7
4
26
10
2
13
2 | Kylertown, Pa. Huntington, W. Va. Spartanburg, S. C. Muskegon, Mich. Wichita, Kans. Oklahoma City, Okla. Butte, Mont. Reno, Nev. Winslow, Ariz. Bakersfield, Calif. | 70.0
55.2
74.5
73.0 | WNW
W
WNW
WSW
SW
WNW | |
17
28
20
10
9
31
2
25
8 | Albany, N. Y. Greensboro, N. C. Miami, Fla. Minneapolis, Minn. Omaha, Nebr. San Antonio, Tex. Great Falls, Mont. Reno, Nev. Las Vegas, Nev. | #### WEATHER ON THE NORTH ATLANTIC OCEAN By H. C. HUNTER Atmospheric pressure.—The pressure during October 1941, averaged above normal over large portions of the North Atlantic, especially near the coasts of the South Atlantic States, Cuba, and the Bahamas. On the other hand it averaged below normal near the Maritime Provinces, Newfoundland, and Labrador. The extremes of pressure noted in vessel reports at hand were 1,036.2 and 991.5 millibars (30.60 and 29.28 inches). The high reading was noted during the forenoon of the 30th, about 50 miles from Montauk Point, in a south-southwest direction. Table 1 shows that the pressure was slightly higher at Halifax, Nova Scotia, that day. The low mark was noted near southeastern Newfoundland during the early afternoon of the 20th. During other portions of the month both Belle Isle and Halifax recorded lower pressures. In low latitudes readings slightly below 1,000 millibars (29.53 inches) were noted by two vessels near 29° N., 75° W., on the 10th, when within the area affected by a storm of tropical origin. However, this storm, when crossing the Bahama Islands several days earlier, as indicated in an article on page 303 of this Review, resulted in a pressure of 964.4 millibars (28.48 inches) on Cat Island. Table 1.—Averages, departures, and extremes of atmospheric pressure (sea level) at selected stations for the North Atlantic Ocean and its shores, October 1941 | Station | Average pressure | Depar-
ture from
normal | Highest | Date | Lowest | Date | |---|---|---|---|--|---|---| | Horta, Azores. Belle Isle, Newfoundland. Halifax, Nova Scotia. Nantucket. Hatteras. Turks Island ¹ Key West New Orleans. | Millibars 1, 020. 0 1, 007. 9 1, 014. 8 1, 018. 0 1, 020. 3 1, 016. 0 1, 016. 3 1, 017. 3 | Millibars
+0.4
-3.3
-2.5
+.4
+2.3
+1.8
+2.4
+.4 | Millibars 1, 031 1, 029 1, 038 1, 036 1, 030 1, 019 1, 022 1, 024 | 13
30
30
30
29
18
14 | Millibars
1, 009
986
989
1, 000
1, 009
1, 012
1, 011
1, 010 | 7
12
11
10
10
16
6
2 | ¹ For 27 days. Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri. Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and Western ** Montana, Idaho, Washington, and Oregon. ** Wyoming, Colorado, Utah, Northern Nevada, and Northern California. ** Southern California, Southern Nevada, Arizona, New Mexico, and extreme West Cyclones and gales.—The vessel reports available indicate a comparatively quiet October. In middle latitudes two strong gales and several fresh gales occurred. The period centering on the 20th appears to have been the most eventful, and from the 8th to 11th likewise was somewhat unquiet. The opening week and the period from 22d to 26th seem to have been remarkably undisturbed from the 30th parallel northward. Tropical disturbances.—In another portion of this issue an account is presented of two disturbances of tropical origin. The earlier of these cyclones was noted to northward of the Virgin Islands on the 3d; it moved westward across the Bahamas and extreme southern Florida, turned northward over the Gulf and traversed parts of western Florida, southern Georgia and South Carolina, then moved southeastward over the Atlantic to near latitude 30°, thence continued mainly eastward till beyond the field of This storm was of comparatively small diameter during much of its course, and was for awhile remarkably intense, especially over the Bahamas. A few lives are reported lost in the Bahamas and some in northwestern Florida. No vessel report that relates to this storm indicates a higher wind than a strong gale (force 9). The later Low was of short path and little moment. Its track was approximately the middle portion of the track of the earlier storm, and the time was about 13 days later. The greatest wind force noted in vessel reports as a result of this disturbance was a moderate gale (force 7). Line squalls.—About 150 miles to eastward of the extreme southeastern coast of Maryland line squalls were noted from a vessel which furnishes this report: October 1, 9:30 p. m., 75th meridian time (equivalent to October 2, 2:30 a. m., Greenwich mean time), in latitude 38°04′ N., longitude 73°00′ W., barometer 30.16 inches (1021.3 millibars), having risen 0.03 inch during 1½ hours preceding, temperature of air 72°, of water 70°; three line squalls, moving southeastward, ranging from about 15 to 20 miles in length, passed at intervals of about 5 to 8 minutes. The clouds appeared in a very compact mass and in an almost straight line. During this time the wind shifted from southalmost straight line. During this time the wind shifted from southwest, Beaufort force 3, to northwest, same force; within the succeeding 3½ hours the wind turned partly back, becoming west, force 2. Other clouds at the time of the squalls were alto-cumulus, about two-tenths of sky being covered, apart from the line squall masses which covered a third of the overhead as they passed. Sea small southwest. Ship's course north-northeast, speed 14 knots. Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania and Northern Ohio. Delaware, Maryland, Virginia, West Virginia, Southern Ohio, Kentucky, Eastern Tennessee and North Carolina. South Carolina, Georgia, Florida, and Alabama. Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota. Note.—All data based on available observations, departures compiled from best available normals related to times of observation, except Hatteras, Key West, Nantucket, and New Orleans, which are 24-hour corrected means.